Rotations in Hilbert Space

March 31, 2017 1:35 pm Published by

An arbitrary rotation in three-dimensional space R3\mathbb R^3 can be described by three Euler rotations by angles α\alpha, β\beta, γ\gamma about the x^\hat x, y^\hat y and z^\hat z-axis. Each rotation is thereby represented a rotation matrix R\mathcal R. The sequential rotations are equivalent to a single rotation about an appropriate axis ϕ=ϕϕ^\vec\phi=\phi\hat\phi by an angle ϕ\phi: R(α,β,γ)=Rz(γ)Ry(β)Rx(α)=R(ϕ)\mathcal R(\alpha,\beta,\gamma)=\mathcal R_z(\gamma)\mathcal R_y(\beta)\mathcal R_x(\alpha)=\mathcal R(\vec\phi), with ϕ=ϕ(α,β,γ)\vec\phi=\vec\phi(\alpha,\beta,\gamma). This orthogonal transformation rotates the physical system under consideration, while keeping the reference frame of R3\mathbb R^3, it is therefore an active rotation with respect to the system, expressed as r=R(α,β,γ)r\vec r^{\,\prime}=\mathcal R(\alpha,\beta,\gamma)\vec r. What is the transformation of the quantum-mechanical states that corresponds to the three-dimensional spatial rotation of the physical system performed in real space? A transformation that accounts for the vector property of a state vector in the two-dimensional Hilbert space H2\mathcal H^2 of spin is required.

Let us first take a look at the different transformation behavior of scalars and vectors in three-dimensional space, where a rotation R\mathcal R of a scalar field ϕ\phi is transformed like ϕ(r)=ϕ(r)\phi^\prime(\vec r^{\,\prime})=\phi(\vec r\,) or ϕ(r)=ϕ(R1r)\phi^\prime(\vec r)=\phi(\mathcal R^{-1} \vec r\,). Upon transformation it features internal dependence on r\vec r only, since ϕ\phi exists in space independently of any present system it is not transformed externally, it is not directed and therefore does not depend on the choice of the describing system. A vector fielda\vec a, on the other hand, very well depends in its representation on the system it is described by, hence it does not only transform internally, but with its components depending on the system, externally too, which is denoted as a(r)=Ra(R1r)\vec a^\prime(\vec r^{\,\prime})=\mathcal R\vec a(\mathcal R^{-1} \vec r\,).

Now back to to the spinor rotations; a state vector in Hilbert space is rotated according to r=R^r\vert \vec r\rangle^\prime=\hat\mathcal R \vert \vec r\rangle, where R^\hat\mathcal R is defined in such way that it is equal to the vector of its eigenvalue r\vec r transformed by the matrix R\mathcal R in R3\mathbb R^3, namely r=Rr\vert\vec r\rangle^\prime=\vert\mathcal R\vec r\rangle. Hence, r=r\vert\vec r\rangle^\prime=\vert\vec r^{\,\prime}\rangle and R^r=Rr\hat\mathcal R\vert\vec r\rangle=\vert\mathcal R\vec r\rangle. In order to conserve the norm of vectors in R3\mathbb R^3, R^\hat\mathcal R must be unitary, which means RR=RR=11\mathcal R\mathcal R^\dagger=\mathcal R^\dagger\mathcal R={1\!\!1} and R=R1\mathcal R^\dagger=\mathcal R^{-1}. We start with a wave function ψ(r)=ψ(r)\psi^\prime(\vec r^{\,\prime})=\psi(\vec r) and asks for a representation of ψ\psi^\prime in terms of ψ(r)=R^ψ(r)=ψ(R1r)\psi^\prime(\vec r\,)=\hat\mathcal R\psi(\vec r\,)=\psi(\mathcal R^{-1}\vec r\,). Performing an infinitesimal rotation about to z^\hat z-direction (Rz1(φ)=Rz(φ),cosφ=1,sinφ=0\mathcal R^{-1}_z(\varphi)=\mathcal R_z(-\varphi),\cos\varphi=1,\sin\varphi=0), we get for the coordinates of three-dimensional space
1
and consequently the wave function
2
Here the bracket term corresponds to the functional representation of the z−component of the operator of orbital angular momentum Lz\mathcal L_z given by
3

Therefore ψ(r)\psi'(\vec r) can be written as ψ(r)=(1iφLz)ψ(r)\psi'(\vec r\,)=\big(1-\frac{\mathrm i}{\hbar}\varphi\mathcal L_z\big)\psi(\vec r\,), or generalized with regard to an arbitrary orientation of a rotation axis φ=φφ^\vec\varphi=\varphi\hat\varphiψ(r)=(11iLφ)ψ(r)\psi'(\vec r\,)=\big({1\!\!1}-\frac{\mathrm i}{\hbar}\vec\mathcal L\cdot\vec\varphi\big)\psi(\vec r\,). This operator represents a differentially small rotation about φ\vec\varphi. For a finite rotation, the above operator has to be applied (in the limit) infinitely often, which gives
16
because of
8

demonstrating that the operator L\vec\mathcal L is originator to the described rotation. Although the spin is independent of other degrees of freedom, it is an angular momentum and a vector operator that will likewise transform upon rotation of the system. With LS=2σ\vec\mathcal L\equiv\vec S=\frac{\hbar}{2}\vec\sigma we finally obtain U(α)=exp(iσα2)=11cosα2iσa^sinα2{\mathcal U}(\vec \alpha)={\mathrm {exp}}\Big(-{\mathrm i}\frac{\vec\sigma\cdot\vec\alpha}{2}\Big)={1\!\!1}\cos\frac{\alpha}{2}-{\mathrm{i}}\vec\sigma\hat a\sin\frac{\alpha}{2}.

Because of exp(iσα2)=k=01k!(iσα2)k=k=01k!(iα2)k(σα^)k{\mathrm {exp}}\Big(-{\mathrm i}\frac{\vec\sigma\cdot\vec\alpha}{2}\Big)=\sum_{k=0}^\infty\frac{1}{k!}\Big(-{\mathrm i}\frac{\vec\sigma\cdot\vec\alpha}{2}\Big)^k=\sum_{k=0}^\infty\frac{1}{k!}\Big(\frac{-{\mathrm i}\alpha}{2}\Big)^k(\vec\sigma\cdot\hat\alpha)^k, where we have again used α=αα^\vec\alpha=\alpha\hat\alpha, the sum can be split in a part with even and one with odd indices exp(iσα2)=k=01(2k)!(iα2)2k(σα^)2k+k=01(2k+1)!(iα2)2k+1(σα^)2k+1{\mathrm {exp}}\Big(-{\mathrm i}\frac{\vec\sigma\cdot\vec\alpha}{2}\Big)=\sum_{k=0}^\infty\frac{1}{(2k)!}\Big(\frac{-{\mathrm i}\alpha}{2}\Big)^{2k}(\vec\sigma\cdot\hat\alpha)^{2k}+\sum_{k=0}^\infty\frac{1}{(2k+1)!}\Big(\frac{-{\mathrm i}\alpha}{2}\Big)^{2k+1}(\vec\sigma\cdot\hat\alpha)^{2k+1}. Using (σα^)2=σiαiσjαj=σiσjαiαj=(δij11+iϵijkσk)αiαj=δijαiαj11=α^211=11(\vec\sigma\hat\alpha)^2=\sigma_i\alpha_i\sigma_j\alpha_j=\sigma_i\sigma_j\alpha_i\alpha_j=(\delta_{ij}{1\!\!1}+ {\mathrm i}\epsilon_{ijk}\sigma_k)\alpha_i\alpha_j=\delta_{ij}\alpha_i\alpha_j{1\!\!1}=\hat\alpha^2 {1\!\!1}={1\!\!1}, which leads to (σα^)2k=11(\vec\sigma\hat\alpha)^{2k}={1\!\!1} and (σα^)2k+1=(σα^) (\vec \sigma\hat\alpha)^{2k+1}=(\vec \sigma\hat\alpha), we finally get
15

It is instructive to take a look at the effect of the unitary operator U\mathcal U on the spin eigenstate z\vert\Uparrow_z \rangle. We apply the operator U(θ)\mathcal U(\vec\theta), where θ\theta is the rotation angle about the axes θ^=(sinϕ,cosϕ,0)T\hat\theta=(\sin\phi,\cos\phi,0)^T onto z\vert\Uparrow_z \rangle, which yields
12a
This is the representation of an arbitrary (pure) spin state, represented by the two parameters θ,ϕ\theta,\phi, being the azimuthal and polar angle of the spin’s Bloch sphere representation, which is illustrated below.
Bloch_3

R. Buchelt, PhD thesis “Spin Dynamics in Polarized Neutron Interferometry” (2000)